Source code for bayespy.inference.vmp.vmp

################################################################################
# Copyright (C) 2011-2015 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################


import numpy as np
import warnings
import time
import h5py
import datetime
import tempfile
import scipy
import logging

from bayespy.utils import misc

from bayespy.inference.vmp.nodes.node import Node

[docs]class VB(): r""" Variational Bayesian (VB) inference engine Parameters ---------- nodes : nodes Nodes that form the model. Must include all at least all stochastic nodes of the model. tol : double, optional Convergence criterion. Tolerance for the relative change in the VB lower bound. autosave_filename : string, optional Filename for automatic saving autosave_iterations : int, optional Iteration interval between each automatic saving callback : callable, optional Function which is called after each update iteration step """
[docs] def __init__(self, *nodes, tol=1e-5, autosave_filename=None, autosave_iterations=0, use_logging=False, user_data=None, callback=None): self.user_data = user_data for (ind, node) in enumerate(nodes): if not isinstance(node, Node): raise ValueError("Argument number %d is not a node" % (ind+1)) if use_logging: logger = logging.getLogger(__name__) self.print = logger.info else: # By default, don't use logging, just print stuff self.print = print # Remove duplicate nodes self.model = misc.unique(nodes) self.ignore_bound_checks = False self._figures = {} self.iter = 0 self.annealing_changed = False self.converged = False self.L = np.array(()) self.cputime = np.array(()) self.l = dict(zip(self.model, len(self.model)*[np.array([])])) self.autosave_iterations = autosave_iterations self.autosave_nodes = None if not autosave_filename: date = datetime.datetime.today().strftime('%Y%m%d%H%M%S') prefix = 'vb_autosave_%s_' % date tmpfile = tempfile.NamedTemporaryFile(prefix=prefix, suffix='.hdf5') self.autosave_filename = tmpfile.name self.filename = None else: self.autosave_filename = autosave_filename self.filename = autosave_filename # Check uniqueness of the node names names = [node.name for node in self.model] if len(names) != len(self.model): raise Exception("Use unique names for nodes.") self.callback = callback self.callback_output = None self.tol = tol
[docs] def use_logging(self, use): if use_logging: logger = logging.getLogger(__name__) self.print = logger.info else: # By default, don't use logging, just print stuff self.print = print return
[docs] def set_autosave(self, filename, iterations=None, nodes=None): self.autosave_filename = filename self.filename = filename self.autosave_nodes = nodes if iterations is not None: self.autosave_iterations = iterations
[docs] def set_callback(self, callback): self.callback = callback
[docs] def update(self, *nodes, repeat=1, plot=False, tol=None, verbose=True, tqdm=None): # TODO/FIXME: # # If no nodes are given and thus everything is updated, the update order # should be from down to bottom. Or something similar.. # By default, update all nodes if len(nodes) == 0: nodes = self.model if plot is True: plot_nodes = self.model elif plot is False: plot_nodes = [] else: plot_nodes = [self[x] for x in plot] converged = False if tqdm is not None: tqdm = tqdm(total=repeat) i = 0 while repeat is None or i < repeat: t = time.time() # Update nodes for node in nodes: X = self[node] if hasattr(X, 'update') and callable(X.update): X.update() if X in plot_nodes: self.plot(X) cputime = time.time() - t i += 1 if tqdm is not None: tqdm.update() if self._end_iteration_step(None, cputime, tol=tol, verbose=verbose): return
[docs] def has_converged(self, tol=None): return self.converged
[docs] def compute_lowerbound(self, ignore_masked=True): L = 0 for node in self.model: L += node.lower_bound_contribution(ignore_masked=ignore_masked) return L
[docs] def compute_lowerbound_terms(self, *nodes): if len(nodes) == 0: nodes = self.model return {node: node.lower_bound_contribution() for node in nodes}
[docs] def loglikelihood_lowerbound(self): L = 0 for node in self.model: lp = node.lower_bound_contribution() L += lp self.l[node][self.iter] = lp return L
[docs] def plot_iteration_by_nodes(self, axes=None, diff=False): """ Plot the cost function per node during the iteration. Handy tool for debugging. """ if axes is None: import matplotlib.pyplot as plt axes = plt.gca() D = len(self.l) N = self.iter + 1 if diff: L = np.empty((N-1,D)) x = np.arange(N-1) + 2 else: L = np.empty((N,D)) x = np.arange(N) + 1 legends = [] for (d, node) in enumerate(self.l): if diff: L[:,d] = np.diff(self.l[node][:N]) else: L[:,d] = self.l[node][:N] legends += [node.name] axes.plot(x, L) axes.legend(legends, loc='lower right') axes.set_title('Lower bound contributions by nodes') axes.set_xlabel('Iteration')
[docs] def get_iteration_by_nodes(self): return self.l
[docs] def save(self, *nodes, filename=None): if len(nodes) == 0: nodes = self.model else: nodes = [self[node] for node in nodes if node is not None] if self.iter == 0: # Check HDF5 version. if h5py.version.hdf5_version_tuple < (1,8,7): warnings.warn("WARNING! Your HDF5 version is %s. HDF5 versions " "<1.8.7 are not able to save empty arrays, thus " "you may experience problems if you for instance " "try to save before running any iteration steps." % str(h5py.version.hdf5_version_tuple)) # By default, use the same file as for auto-saving if not filename: if self.autosave_filename: filename = self.autosave_filename else: raise Exception("Filename must be given.") # Open HDF5 file h5f = h5py.File(filename, 'w') try: # Write each node nodegroup = h5f.create_group('nodes') for node in nodes: if node.name == '': raise Exception("In order to save nodes, they must have " "(unique) names.") if hasattr(node, '_save') and callable(node._save): node._save(nodegroup.create_group(node.name)) # Write iteration statistics misc.write_to_hdf5(h5f, self.L, 'L') misc.write_to_hdf5(h5f, self.cputime, 'cputime') misc.write_to_hdf5(h5f, self.iter, 'iter') misc.write_to_hdf5(h5f, self.converged, 'converged') if self.callback_output is not None: misc.write_to_hdf5(h5f, self.callback_output, 'callback_output') boundgroup = h5f.create_group('boundterms') for node in nodes: misc.write_to_hdf5(boundgroup, self.l[node], node.name) # Write user data if self.user_data is not None: user_data_group = h5f.create_group('user_data') for (key, value) in self.user_data.items(): user_data_group[key] = value finally: # Close file h5f.close()
[docs] @staticmethod def load_user_data(filename): f = h5py.File(filename, 'r') try: group = f['user_data'] for (key, value) in group.items(): user_data['key'] = value[...] except: raise finally: f.close() return
[docs] def load(self, *nodes, filename=None, nodes_only=False): # By default, use the same file as for auto-saving if not filename: if self.autosave_filename: filename = self.autosave_filename else: raise Exception("Filename must be given.") # Open HDF5 file h5f = h5py.File(filename, 'r') try: # Get nodes to load if len(nodes) == 0: nodes = self.model else: nodes = [self[node] for node in nodes if node is not None] # Read each node for node_id in nodes: node = self[node_id] if node.name == '': h5f.close() raise Exception("In order to load nodes, they must have " "(unique) names.") if hasattr(node, 'load') and callable(node.load): try: node._load(h5f['nodes'][node.name]) except KeyError: h5f.close() raise Exception("File does not contain variable %s" % node.name) # Read iteration statistics if not nodes_only: self.L = h5f['L'][...] self.cputime = h5f['cputime'][...] self.iter = h5f['iter'][...] self.converged = h5f['converged'][...] for node in nodes: self.l[node] = h5f['boundterms'][node.name][...] try: self.callback_output = h5f['callback_output'][...] except KeyError: pass finally: # Close file h5f.close()
def __getitem__(self, name): if name in self.model: return name else: # Dictionary for mapping node names to nodes dictionary = {node.name: node for node in self.model} return dictionary[name]
[docs] def plot(self, *nodes, **kwargs): """ Plot the distribution of the given nodes (or all nodes) """ if len(nodes) == 0: nodes = self.model for node in nodes: node = self[node] if node.has_plotter(): import matplotlib.pyplot as plt try: fignum = self._figures[node] except KeyError: fig = plt.figure() self._figures[node] = fig.number else: fig = plt.figure(num=fignum) fig.clf() node.plot(fig=fig, **kwargs) fig.canvas.draw()
@property def ignore_bound_checks(self): return self.__ignore_bound_checks @ignore_bound_checks.setter def ignore_bound_checks(self, ignore): self.__ignore_bound_checks = ignore
[docs] def get_gradients(self, *nodes, euclidian=False): """ Computes gradients (both Riemannian and normal) """ rg = [self[node].get_riemannian_gradient() for node in nodes] if euclidian: g = [self[node].get_gradient(rg_x) for (node, rg_x) in zip(nodes, rg)] return (rg, g) else: return rg
[docs] def get_parameters(self, *nodes): """ Get parameters of the nodes """ return [self[node].get_parameters() for node in nodes]
[docs] def set_parameters(self, x, *nodes): """ Set parameters of the nodes """ for (node, xi) in zip(nodes, x): self[node].set_parameters(xi) return
[docs] def gradient_step(self, *nodes, scale=1.0): """ Update nodes by taking a gradient ascent step """ p = self.add(self.get_parameters(*nodes), self.get_gradients(*nodes), scale=scale) self.set_parameters(p, *nodes) return
[docs] def dot(self, x1, x2): """ Computes dot products of given vectors (in parameter format) """ v = 0 # Loop over nodes for (y1, y2) in zip(x1, x2): # Loop over parameters for (z1, z2) in zip(y1, y2): v += np.dot(np.ravel(z1), np.ravel(z2)) return v
[docs] def add(self, x1, x2, scale=1): """ Add two vectors (in parameter format) """ v = [] # Loop over nodes for (y1, y2) in zip(x1, x2): v.append([]) # Loop over parameters for (z1, z2) in zip(y1, y2): v[-1].append(z1 + scale*z2) return v
[docs] def optimize(self, *nodes, maxiter=10, verbose=True, method='fletcher-reeves', riemannian=True, collapsed=None, tol=None): """ Optimize nodes using Riemannian conjugate gradient """ method = method.lower() if collapsed is None: collapsed = [] scale = 1.0 p = self.get_parameters(*nodes) dd_prev = 0 for i in range(maxiter): t = time.time() # Get gradients if riemannian and method == 'gradient': rg = self.get_gradients(*nodes, euclidian=False) g1 = rg g2 = rg else: (rg, g) = self.get_gradients(*nodes, euclidian=True) if riemannian: g1 = g g2 = rg else: g1 = g g2 = g if method == 'gradient': b = 0 elif method == 'fletcher-reeves': dd_curr = self.dot(g1, g2) if dd_prev == 0: b = 0 else: b = dd_curr / dd_prev dd_prev = dd_curr else: raise Exception("Unknown optimization method: %s" % (method)) if b: s = self.add(g2, s, scale=b) else: s = g2 success = False while not success: p_new = self.add(p, s, scale=scale) try: self.set_parameters(p_new, *nodes) except: if verbose: self.print("CG update was unsuccessful, using gradient and resetting CG") if s is g2: scale = scale / 2 dd_prev = 0 s = g2 continue # Update collapsed variables collapsed_params = self.get_parameters(*collapsed) try: for node in collapsed: self[node].update() except: self.set_parameters(collapsed_params, *collapsed) if verbose: self.print("Collapsed node update node failed, reset CG") if s is g2: scale = scale / 2 dd_prev = 0 s = g2 continue L = self.compute_lowerbound() bound_decreased = ( self.iter > 0 and L < self.L[self.iter-1] and not np.allclose(L, self.L[self.iter-1], rtol=1e-8) ) if np.isnan(L) or bound_decreased: # Restore the state of the collapsed nodes to what it was # before updating them self.set_parameters(collapsed_params, *collapsed) if s is g2: scale = scale / 2 if verbose: self.print( "Gradient ascent decreased lower bound from {0} to {1}, halfing step length" .format( self.L[self.iter-1], L, ) ) else: if scale < 2 ** (-10): if verbose: self.print( "CG decreased lower bound from {0} to {1}, reset CG." .format( self.L[self.iter-1], L, ) ) dd_prev = 0 s = g2 else: scale = scale / 2 if verbose: self.print( "CG decreased lower bound from {0} to {1}, halfing step length" .format( self.L[self.iter-1], L, ) ) continue success = True scale = scale * np.sqrt(2) p = p_new cputime = time.time() - t if self._end_iteration_step('OPT', cputime, tol=tol, verbose=verbose): break
[docs] def set_annealing(self, annealing): """ Set deterministic annealing from range (0, 1]. With 1, no annealing, standard updates. With smaller values, entropy has more weight and model probability equations less. With 0, one would obtain improper uniform distributions. """ for node in self.model: node.annealing = annealing self.annealing_changed = True self.converged = False return
def _append_iterations(self, iters): """ Append some arrays for more iterations """ self.L = np.append(self.L, misc.nans(iters)) self.cputime = np.append(self.cputime, misc.nans(iters)) for (node, l) in self.l.items(): self.l[node] = np.append(l, misc.nans(iters)) return def _end_iteration_step(self, method, cputime, tol=None, verbose=True, bound_cpu_time=True): """ Do some routines after each iteration step """ if self.iter >= len(self.L): self._append_iterations(100) # Call the custom function provided by the user if callable(self.callback): z = self.callback() if z is not None: z = np.array(z)[...,np.newaxis] if self.callback_output is None: self.callback_output = z else: self.callback_output = np.concatenate((self.callback_output,z), axis=-1) t = time.time() L = self.loglikelihood_lowerbound() if bound_cpu_time: cputime += time.time() - t self.cputime[self.iter] = cputime self.L[self.iter] = L if verbose: if method: self.print("Iteration %d (%s): loglike=%e (%.3f seconds)" % (self.iter+1, method, L, cputime)) else: self.print("Iteration %d: loglike=%e (%.3f seconds)" % (self.iter+1, L, cputime)) # Check the progress of the iteration self.converged = False if not self.ignore_bound_checks and not self.annealing_changed and self.iter > 0: # Check for errors if self.L[self.iter-1] - L > 1e-6: L_diff = (self.L[self.iter-1] - L) warnings.warn("Lower bound decreased %e! Bug somewhere or " "numerical inaccuracy?" % L_diff) # Check for convergence L0 = self.L[self.iter-1] L1 = self.L[self.iter] if tol is None: tol = self.tol div = 0.5 * (abs(L0) + abs(L1)) if (L1 - L0) / div < tol: #if (L1 - L0) / div < tol or L1 - L0 <= 0: if verbose: self.print("Converged at iteration %d." % (self.iter+1)) self.converged = True # Auto-save, if requested if (self.autosave_iterations > 0 and np.mod(self.iter+1, self.autosave_iterations) == 0): if self.autosave_nodes is not None: self.save(*self.autosave_nodes, filename=self.autosave_filename) else: self.save(filename=self.autosave_filename) if verbose: self.print('Auto-saved to %s' % self.autosave_filename) self.annealing_changed = False self.iter += 1 return self.converged