bayespy.inference.vmp.nodes.stochastic.Stochastic

class bayespy.inference.vmp.nodes.stochastic.Stochastic(*args, initialize=True, dims=None, **kwargs)[source]

Base class for nodes that are stochastic.

u observed

Sub-classes must implement:

_compute_message_to_parent(parent, index, u_self, *u_parents) _update_distribution_and_lowerbound(self, m, *u) lowerbound(self) _compute_dims initialize_from_prior()

If you want to be able to observe the variable:

_compute_fixed_moments_and_f

Sub-classes may need to re-implement: 1. If they manipulate plates:

_compute_weights_to_parent(index, weights) _compute_plates_to_parent(self, index, plates) _compute_plates_from_parent(self, index, plates)

__init__(*args, initialize=True, dims=None, **kwargs)[source]

Methods

__init__(*args[, initialize, dims])

add_plate_axis(to_plate)

broadcasting_multiplier(plates, *args)

delete()

Delete this node and the children

get_mask()

get_moments()

get_pdf_nodes()

get_shape(ind)

has_plotter()

Return True if the node has a plotter

load(filename)

lowerbound()

move_plates(from_plate, to_plate)

observe(x[, mask])

Fix moments, compute f and propagate mask.

plot([fig])

Plot the node distribution using the plotter of the node

random()

Draw a random sample from the distribution.

save(filename)

set_plotter(plotter)

show()

Print the distribution using standard parameterization.

unobserve()

update([annealing])

Attributes

plates

plates_multiplier

Plate multiplier is applied to messages to parents