bayespy.nodes.CategoricalMarkovChain
-
class bayespy.nodes.CategoricalMarkovChain(pi, A, states=None, **kwargs)[source]
Node for categorical Markov chain random variables.
The node models a Markov chain which has a discrete set of K possible states
and the next state depends only on the previous state and the state
transition probabilities. The graphical model is shown below:
where
contains the probabilities for the initial
state and
is the state transition probability matrix. It
is possible to have
varying in time.
where
This node can be used to construct hidden Markov models by using
Mixture
for the emission distribution.
- Parameters:
pi (Dirichlet-like node or (...,K)-array) –
, probabilities for the first
state.
-dimensional Dirichlet.
A (Dirichlet-like node or (K,K)-array or (...,1,K,K)-array or (...,N-1,K,K)-array) –
, probabilities for state
transitions.
-dimensional Dirichlet with plates (K,) or
(…,1,K) or (…,N-1,K).
states (int, optional) –
, the length of the chain.
-
__init__(pi, A, states=None, **kwargs)[source]
Create categorical Markov chain
Methods
__init__ (pi, A[, states])
|
Create categorical Markov chain |
add_plate_axis (to_plate)
|
|
broadcasting_multiplier (plates, *args)
|
|
delete ()
|
Delete this node and the children |
get_gradient (rg)
|
Computes gradient with respect to the natural parameters. |
get_mask ()
|
|
get_moments ()
|
|
get_parameters ()
|
Return parameters of the VB distribution. |
get_pdf_nodes ()
|
|
get_riemannian_gradient ()
|
Computes the Riemannian/natural gradient. |
get_shape (ind)
|
|
has_plotter ()
|
Return True if the node has a plotter |
initialize_from_parameters (*args)
|
|
initialize_from_prior ()
|
|
initialize_from_random ()
|
Set the variable to a random sample from the current distribution. |
initialize_from_value (x, *args)
|
|
load (filename)
|
|
logpdf (X[, mask])
|
Compute the log probability density function Q(X) of this node. |
lower_bound_contribution ([gradient, ...])
|
Compute E[ log p(X|parents) - log q(X) ] |
lowerbound ()
|
|
move_plates (from_plate, to_plate)
|
|
observe (x, *args[, mask])
|
Fix moments, compute f and propagate mask. |
pdf (X[, mask])
|
Compute the probability density function of this node. |
plot ([fig])
|
Plot the node distribution using the plotter of the node |
random ()
|
Draw a random sample from the distribution. |
save (filename)
|
|
set_parameters (x)
|
Set the parameters of the VB distribution. |
set_plotter (plotter)
|
|
show ()
|
Print the distribution using standard parameterization. |
unobserve ()
|
|
update ([annealing])
|
|
Attributes