################################################################################
# Copyright (C) 2012-2014 Jaakko Luttinen
#
# This file is licensed under the MIT License.
################################################################################
"""
This module contains VMP nodes for Gaussian Markov chains.
"""
import numpy as np
import scipy
from bayespy.utils import misc
from bayespy.utils import linalg
from .node import Node, message_sum_multiply
from .deterministic import Deterministic
from .expfamily import ExponentialFamily
from .expfamily import ExponentialFamilyDistribution
from .expfamily import useconstructor
from .gaussian import (Gaussian,
GaussianMoments,
GaussianWishartMoments,
GaussianGammaMoments,
WrapToGaussianGamma,
WrapToGaussianWishart)
from .wishart import Wishart, WishartMoments
from .gamma import Gamma, GammaMoments
from .categorical import CategoricalMoments
from .node import Moments, ensureparents
[docs]class GaussianMarkovChainMoments(Moments):
[docs] def __init__(self, N, D):
self.N = N
self.D = D
return super().__init__()
[docs] def compute_fixed_moments(self, x):
u0 = x
u1 = x[...,:,np.newaxis] * x[...,np.newaxis,:]
u2 = x[...,:-1,:,np.newaxis] * x[...,1:,np.newaxis,:]
return [u0, u1, u2]
[docs] def rotate(self, u, R, logdet=None):
if logdet is None:
logdet = np.linalg.slogdet(R)[1]
N = np.shape(u[0])[-2]
# Transform moments and g
u0 = linalg.mvdot(R, u[0])
u1 = linalg.dot(R, u[1], R.T)
u2 = linalg.dot(R, u[2], R.T)
u = [u0, u1, u2]
dg = -N * logdet
return (u, dg)
class TemplateGaussianMarkovChainDistribution(ExponentialFamilyDistribution):
"""
Sub-classes implement distribution specific computations.
"""
def __init__(self, N, D):
self.N = N
self.D = D
self.moments = GaussianMarkovChainMoments(N, D)
super().__init__()
def compute_message_to_parent(self, parent, index, u_self, *u_parents):
raise NotImplementedError()
def compute_weights_to_parent(self, index, weights):
raise NotImplementedError()
def compute_phi_from_parents(self, *u_parents, mask=True):
raise NotImplementedError()
def compute_moments_and_cgf(self, phi, mask=True):
"""
Compute the moments and the cumulant-generating function.
This basically performs the filtering and smoothing for the variable.
Parameters
----------
phi
Returns
-------
u
g
"""
# Solve the Kalman filtering and smoothing problem
y = phi[0]
A = -2*phi[1]
# Don't multiply phi[2] by two because it is a sum of the super- and
# sub-diagonal blocks so we would need to divide by two anyway.
B = -phi[2]
(CovXnXn, CovXpXn, Xn, ldet) = linalg.block_banded_solve(A, B, y)
# Compute moments
u0 = Xn
u1 = CovXnXn + Xn[...,:,np.newaxis] * Xn[...,np.newaxis,:]
u2 = CovXpXn + Xn[...,:-1,:,np.newaxis] * Xn[...,1:,np.newaxis,:]
u = [u0, u1, u2]
# Compute cumulant-generating function
g = -0.5 * np.einsum('...ij,...ij', u[0], phi[0]) + 0.5*ldet
return (u, g)
def compute_cgf_from_parents(self, *u_parents):
raise NotImplementedError()
def compute_fixed_moments_and_f(self, x, mask=True):
"""
Compute u(x) and f(x) for given x.
"""
u0 = x
u1 = x[...,:,np.newaxis] * x[...,np.newaxis,:]
u2 = x[...,:-1,:,np.newaxis] * x[...,1:,np.newaxis,:]
u = [u0, u1, u2]
f = -0.5 * np.shape(x)[-2] * np.shape(x)[-1] * np.log(2*np.pi)
return (u, f)
def plates_to_parent(self, index, plates):
"""
Computes the plates of this node with respect to a parent.
Child classes must implement this.
Parameters
-----------
index : int
The index of the parent node to use.
"""
raise NotImplementedError()
def plates_from_parent(self, index, plates):
"""
Compute the plates using information of a parent node.
Child classes must implement this.
Parameters
----------
index : int
Index of the parent to use.
"""
raise NotImplementedError()
def rotate(self, u, phi, R, inv=None, logdet=None):
(u, dg) = self.moments.rotate(u, R, logdet=logdet)
# It would be more efficient and simpler, if you just rotated the
# moments and didn't touch phi. However, then you would need to call
# update() before lower_bound_contribution. This is more error-safe.
if inv is None:
inv = np.linalg.inv(R)
# Transform parameters
phi0 = linalg.mvdot(inv.T, phi[0])
phi1 = linalg.dot(inv.T, phi[1], inv)
phi2 = linalg.dot(inv.T, phi[2], inv)
phi = [phi0, phi1, phi2]
return (u, phi, dg)
def compute_rotation_bound(self, u, u_mu_Lambda, u_A_V, R, inv=None, logdet=None):
(Lambda_mu, Lambda_mumu, Lambda, logdetLambda) = u_mu_Lambda
(V_A, V_AA, V, logdetV) = u_A_V
V = misc.make_diag(V, ndim=1)
R_XnXn = linalg.dot(R, self.XnXn)
R_XpXp = linalg.dot(R, self.XpXp)
R_X0X0 = linalg.dot(R, self.X0X0)
tracedot(dot(Lambda, R_X0X0), R.T)
tracedot(dot(V, R_XnXn), R.T)
tracedot(dot(V_AA, R_XpXp), R.T)
tracedot(dot(V_A, R_XpXn), R.T)
(N - 1) * logdetV
2 * N * logdetR
logp = random.gaussian_logpdf(
Lambda_R_X0X0_R + V_R_XnXn_R,
V_A_R_XpXn_R,
V_AA_R_XpXp_R,
(N - 1) * logdetV + 2 * N * logdetR
)
logH = random.gaussian_entropy(
-2 * M * logdetR,
0
)
dlogp
dlogH
return (L, dL)
class _TemplateGaussianMarkovChain(ExponentialFamily):
r"""
VMP abstract node for Gaussian Markov chain.
This is a general base class for different Gaussian Markov chain nodes.
Output is Gaussian variables with mean, covariance and one-step
cross-covariance.
self.phi and self.u are defined in a particular way but otherwise the parent
nodes may vary.
Child classes must implement the following methods:
_plates_to_parent
_plates_from_parent
See also
--------
bayespy.inference.vmp.nodes.gaussian.Gaussian
bayespy.inference.vmp.nodes.wishart.Wishart
"""
def random(self, *phi, plates=None):
raise NotImplementedError()
def _compute_cgf_for_gaussian_markov_chain(mumu_Lambda, logdet_Lambda,
logdet_nu, N):
"""
Compute CGF using the moments of the parents.
"""
g0 = -0.5 * mumu_Lambda #np.einsum('...ij,...ij->...', mumu, Lambda)
g1 = 0.5 * logdet_Lambda
if np.ndim(logdet_nu) == 1:
g1 = g1 + 0.5 * (N-1) * np.sum(logdet_nu, axis=-1)
elif np.shape(logdet_nu)[-2] == 1:
g1 = g1 + 0.5 * (N-1) * np.sum(logdet_nu, axis=(-1,-2))
else:
g1 = g1 + 0.5 * np.sum(logdet_nu, axis=(-1,-2))
return g0 + g1
[docs]class GaussianMarkovChainDistribution(TemplateGaussianMarkovChainDistribution):
r"""
Implementation of VMP formulas for Gaussian Markov chain
The log probability density function of the prior:
.. todo:: Fix inputs and their weight matrix in the equations.
.. math::
\log p(\mathbf{X} | \boldsymbol{\mu}, \mathbf{\Lambda},
\mathbf{A}, \mathbf{B}, \boldsymbol{\nu})
=& \log \mathcal{N}(\mathbf{x}_0|\boldsymbol{\mu}, \mathbf{\Lambda})
+ \sum^N_{n=1} \log \mathcal{N}(
\mathbf{x}_n | \mathbf{Ax}_{n-1} + \mathbf{Bu}_n,
\mathrm{diag}(\boldsymbol{\nu}))
\\
=&
- \frac{1}{2} \mathbf{x}_0^T \mathbf{\Lambda} \mathbf{x}_0
+ \frac{1}{2} \mathbf{x}_0^T \mathbf{\Lambda} \boldsymbol{\mu}
+ \frac{1}{2} \boldsymbol{\mu}^T \mathbf{\Lambda} \mathbf{x}_0
- \frac{1}{2} \boldsymbol{\mu}^T \mathbf{\Lambda} \boldsymbol{\mu}
+ \frac{1}{2} \log|\mathbf{\Lambda}|
\\
&
- \frac{1}{2} \sum^N_{n=1} \mathbf{x}_n^T \mathrm{diag}(\boldsymbol{\nu}) \mathbf{x}_n
+ \frac{1}{2} \sum^N_{n=1} \mathbf{x}_n^T \mathrm{diag}(\boldsymbol{\nu}) \mathbf{A} \mathbf{x}_{n-1}
+ \frac{1}{2} \sum^N_{n=1} \mathbf{x}_{n-1}^T\mathbf{A}^T \mathrm{diag}(\boldsymbol{\nu}) \mathbf{x}_n
- \frac{1}{2} \sum^N_{n=1} \mathbf{x}_{n-1}^T\mathbf{A}^T \mathrm{diag}(\boldsymbol{\nu}) \mathbf{A} \mathbf{x}_{n-1}
\\ &
+ \sum^N_{n=1} \sum^D_{d=1} \log\nu_d - \frac{1}{2} (N+1) D \log(2\pi)
\\
=&
\begin{bmatrix}
\mathbf{x}_0 \\ \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_{N-1} \\ \mathbf{x}_N
\end{bmatrix}^T
\begin{bmatrix}
-\frac{1}{2}\mathbf{\Lambda} - \frac{1}{2}\mathbf{A}\mathrm{diag}(\boldsymbol{\nu})\mathbf{A}^T
&
\frac{1}{2} \mathbf{A}^T\mathrm{diag}(\boldsymbol{\nu})
&
&
&
\\
\frac{1}{2} \mathrm{diag}(\boldsymbol{\nu}) \mathbf{A}
&
-\frac{1}{2} \mathrm{diag}(\boldsymbol{\nu})
- \frac{1}{2}\mathbf{A}^T\mathrm{diag}(\boldsymbol{\nu})\mathbf{A}^T
&
\frac{1}{2} \mathbf{A}^T\mathrm{diag}(\boldsymbol{\nu})
&
&
\\
&
\ddots
&
\ddots
&
\ddots
&
\\
&
&
\frac{1}{2} \mathrm{diag}(\boldsymbol{\nu}) \mathbf{A}
&
-\frac{1}{2} \mathrm{diag}(\boldsymbol{\nu})
- \frac{1}{2}\mathbf{A}^T\mathrm{diag}(\boldsymbol{\nu})\mathbf{A}^T
&
\frac{1}{2} \mathbf{A}^T\mathrm{diag}(\boldsymbol{\nu})
\\
&
&
&
\frac{1}{2} \mathrm{diag}(\boldsymbol{\nu}) \mathbf{A}
&
-\frac{1}{2} \mathrm{diag}(\boldsymbol{\nu})
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_0 \\ \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_{N-1} \\ \mathbf{x}_N
\end{bmatrix}
\\
&
+ \frac{1}{2} \mathbf{x}_0^T \mathbf{\Lambda} \boldsymbol{\mu}
+ \frac{1}{2} \boldsymbol{\mu}^T \mathbf{\Lambda} \mathbf{x}_0
- \frac{1}{2} \boldsymbol{\mu}^T \mathbf{\Lambda} \boldsymbol{\mu}
+ \frac{1}{2} \log|\mathbf{\Lambda}|
+ \sum^N_{n=1} \sum^D_{d=1} \log\nu_d - \frac{1}{2} (N+1) D \log(2\pi)
For simplicity, :math:`\boldsymbol{\nu}` and :math:`\mathbf{A}` are assumed
not to depend on :math:`n` in the above equation, but this distribution
class supports that dependency. One only needs to do the following
replacements in the equations: :math:`\boldsymbol{\nu} \leftarrow \boldsymbol{\nu}_n` and
:math:`\mathbf{A} \leftarrow \mathbf{A}_n`, where :math:`n=1,\ldots,N`.
.. math::
u(\mathbf{X}) &=
\begin{bmatrix}
\begin{bmatrix} \mathbf{x}_0 & \ldots & \mathbf{x}_N \end{bmatrix}
\\
\begin{bmatrix} \mathbf{x}_0\mathbf{x}_0^T & \ldots & \mathbf{x}_N\mathbf{x}_N^T \end{bmatrix}
\\
\begin{bmatrix} \mathbf{x}_0\mathbf{x}_1^T & \ldots & \mathbf{x}_{N-1}\mathbf{x}_N^T \end{bmatrix}
\end{bmatrix}
\\
\phi(\boldsymbol{\mu}, \mathbf{\Lambda}, \mathbf{A}, \boldsymbol{\nu}) &=
\begin{bmatrix}
\begin{bmatrix}
\mathbf{\Lambda} \boldsymbol{\mu} & \mathbf{0} & \ldots & \mathbf{0}
\end{bmatrix}
\\
\begin{bmatrix}
-\frac{1}{2}\mathbf{\Lambda} - \frac{1}{2} \mathbf{A}\mathrm{diag}(\boldsymbol{\nu})\mathbf{A}^T &
-\frac{1}{2}\mathrm{diag}(\boldsymbol{\nu}) - \frac{1}{2} \mathbf{A}\mathrm{diag}(\boldsymbol{\nu})\mathbf{A}^T &
\ldots &
-\frac{1}{2}\mathrm{diag}(\boldsymbol{\nu}) - \frac{1}{2} \mathbf{A}\mathrm{diag}(\boldsymbol{\nu})\mathbf{A}^T &
-\frac{1}{2}\mathrm{diag}(\boldsymbol{\nu})
\end{bmatrix}
\\
\begin{bmatrix}
\mathbf{A}^T \mathrm{diag}(\boldsymbol{\nu}) & \ldots & \mathbf{A}^T \mathrm{diag}(\boldsymbol{\nu})
\end{bmatrix}
\end{bmatrix}
\\
g(\boldsymbol{\mu}, \mathbf{\Lambda}, \mathbf{A}, \boldsymbol{\nu}) &=
\frac{1}{2}\log|\mathbf{\Lambda}| + \frac{1}{2} \sum^N_{n=1}\sum^D_{d=1}\log\nu_d
\\
f(\mathbf{X}) &= -\frac{1}{2} (N+1) D \log(2\pi)
The log probability denisty function of the posterior approximation:
.. math::
\log q(\mathbf{X}) &=
\begin{bmatrix}
\mathbf{x}_0
\\
\mathbf{x}_1
\\
\vdots
\\
\mathbf{x}_{N-1}
\\
\mathbf{x}_N
\end{bmatrix}^T
\begin{bmatrix}
\mathbf{\Phi}_0^{(2)} & \frac{1}{2}\mathbf{\Phi}_1^{(3)} & & &
\\
\frac{1}{2}{\mathbf{\Phi}_1^{(3)}}^T & \mathbf{\Phi}_1^{(2)} & \frac{1}{2}\mathbf{\Phi}_2^{(3)} & &
\\
& \ddots & \ddots & \ddots &
\\
& & \frac{1}{2}{\mathbf{\Phi}_{N-1}^{(3)}}^T & \mathbf{\Phi}_{N-1}^{(2)} & \frac{1}{2}\mathbf{\Phi}_N^{(3)}
\\
& & & \frac{1}{2}{\mathbf{\Phi}_N^{(3)}}^T & \mathbf{\Phi}_N^{(2)}
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_0
\\
\mathbf{x}_1
\\
\vdots
\\
\mathbf{x}_{N-1}
\\
\mathbf{x}_N
\end{bmatrix}
+ \ldots
"""
[docs] def compute_message_to_parent(self, parent, index, u, u_mu_Lambda, u_A_nu, *u_inputs):
r"""
Compute a message to a parent.
Parameters
----------
index : int
Index of the parent requesting the message.
u : list of ndarrays
Moments of this node.
u_mu_Lambda : list of ndarrays
Moments of parents :math:`(\boldsymbol{\mu}, \mathbf{\Lambda})`.
u_A_nu : list of ndarrays
Moments of parents :math:`(\mathbf{A}, \boldsymbol{\nu})`.
u_inputs : list of ndarrays
Moments of input signals.
"""
D = np.shape(u[0])[-1]
if index == 0: # (mu, Lambda) -- GaussianWishartMoments
x0 = u[0][...,0,:]
x0x0 = u[1][...,0,:,:]
m0 = x0
m1 = -0.5
m2 = -0.5 * x0x0
m3 = 0.5
return [m0, m1, m2, m3]
elif index == 1: # (A, nu) -- GaussianGammaMoments
XnXn = u[1]
XpXn = u[2]
# (..., N-1, D, D)
m0 = XpXn.swapaxes(-1,-2)
# (..., N-1, D, D, D)
m1 = -0.5 * XnXn[..., :-1, None, :, :]
# (..., N-1, D)
m2 = -0.5 * np.einsum('...ii->...i', XnXn[...,1:,:,:])
# (..., N-1, D)
m3 = 0.5
if len(u_inputs):
Xn = u[0]
z = u_inputs[0][0]
zz = u_inputs[0][1]
D_inputs = np.shape(z)[-1]
m0_B = Xn[...,1:,:,None] * z[...,None,:]
m1_BB = -0.5 * zz[..., None, :, :]
m1_AB = -0.5 * Xn[..., :-1, None, :, None] * z[..., None, None, :]
# Construct full message arrays from blocks
m0 = np.concatenate([m0, m0_B], axis=-1)
row1 = np.concatenate([m1, m1_AB], axis=-1)
row2 = np.concatenate([m1_AB.swapaxes(-1,-2), m1_BB], axis=-1)
m1 = np.concatenate([row1, row2], axis=-2)
return [m0, m1, m2, m3]
# m1 = 0.5
elif index == 2: # input signals
# (..., N-1, D)
Xn = u[0][...,1:,:]
# (..., N-1, D)
Xp = u[0][...,:-1,:]
# (..., N-1, D, K)
B = u_A_nu[0][...,D:]
# (..., N-1, D, D, K)
AB = u_A_nu[1][...,:D,D:]
# (..., N-1, D, K, K)
BB = u_A_nu[1][...,D:,D:]
# (..., N-1, K)
m0 = (
np.einsum('...dk,...d->...k', B, Xn) -
np.einsum('...dk,...d->...k', np.sum(AB, axis=-3), Xp)
)
# (..., N-1, K, K)
m1 = -0.5 * np.sum(BB, axis=-3)
return [m0, m1]
raise IndexError("Parent index out of bounds")
[docs] def compute_weights_to_parent(self, index, weights):
if index == 0: # mu_Lambda
return weights
elif index == 1: # A_nu
return weights[...,np.newaxis,np.newaxis]
elif index == 2: # input signals
return weights[...,np.newaxis]
else:
raise ValueError("Index out of bounds")
[docs] def compute_phi_from_parents(self, u_mu_Lambda, u_A_nu, *u_inputs, mask=True):
"""
Compute the natural parameters using parents' moments.
Parameters
----------
u_parents : list of list of arrays
List of parents' lists of moments.
Returns
-------
phi : list of arrays
Natural parameters.
dims : tuple
Shape of the variable part of phi.
"""
# Dimensionality of the Gaussian states
D = np.shape(u_mu_Lambda[0])[-1]
# Number of time instances in the process
N = self.N
# Helpful variables (show shapes in comments)
Lambda_mu = u_mu_Lambda[0] # (..., D)
Lambda = u_mu_Lambda[2] # (..., D, D)
nu_A = u_A_nu[0][...,:D] # (..., N-1, D, D)
nu_AA = u_A_nu[1][...,:D,:D] # (..., N-1, D, D, D)
nu_B = u_A_nu[0][...,D:] # (..., N-1, D, inputs)
nu_BB = u_A_nu[1][...,D:,D:] # (..., N-1, D, inputs, inputs)
nu_AB = u_A_nu[1][...,:D,D:] # (..., N-1, D, D, inputs)
nu = u_A_nu[2] * np.ones(D) # (..., N-1, D)
# mu = u_mu[0] # (..., D)
# Lambda = u_Lambda[0] # (..., D, D)
# A = u_A[0][...,:D] # (..., N-1, D, D)
# AA = u_A[1][...,:D,:D] # (..., N-1, D, D, D)
# B = u_A[0][...,D:] # (..., N-1, D, inputs)
# BB = u_A[1][...,D:,D:] # (..., N-1, D, inputs, inputs)
# AB = u_A[1][...,:D,D:] # (..., N-1, D, D, inputs)
# v = u_v[0] # (..., N-1, D)
if len(u_inputs):
inputs = u_inputs[0][0]
else:
inputs = None
# Allocate memory (take into account effective plates)
if inputs is not None:
plates_phi0 = misc.broadcasted_shape(np.shape(Lambda_mu)[:-1],
np.shape(nu_B)[:-3],
np.shape(nu_AB)[:-4])
else:
plates_phi0 = misc.broadcasted_shape(np.shape(Lambda_mu)[:-1])
plates_phi1 = misc.broadcasted_shape(np.shape(Lambda)[:-2],
np.shape(nu_AA)[:-4])
plates_phi2 = misc.broadcasted_shape(np.shape(nu_A)[:-3])
phi0 = np.zeros(plates_phi0+(N,D))
phi1 = np.zeros(plates_phi1+(N,D,D))
phi2 = np.zeros(plates_phi2+(N-1,D,D))
# Parameters for x0
phi0[...,0,:] = Lambda_mu #np.einsum('...ik,...k->...i', Lambda, mu)
phi1[...,0,:,:] = -0.5 * Lambda
# Effect of the input signals
if inputs is not None:
phi0[...,1:,:] += np.einsum('...ij,...j->...i', nu_B, inputs)
phi0[...,:-1,:] -= np.einsum(
'...ij,...j->...i',
np.sum(nu_AB, axis=-3),
inputs
)
# Diagonal blocks: -0.5 * (V_i + A_{i+1}' * V_{i+1} * A_{i+1})
phi1[..., 1:, :, :] = -0.5 * misc.diag(nu, ndim=1)
phi1[..., :-1, :, :] += -0.5 * np.sum(nu_AA, axis=-3) #np.einsum('...kij,...k->...ij', AA, v)
#phi1 *= -0.5
# Super-diagonal blocks: 0.5 * A.T * V
# However, don't multiply by 0.5 because there are both super- and
# sub-diagonal blocks (sum them together)
phi2[..., :, :, :] = linalg.transpose(nu_A, ndim=1) # np.einsum('...ji,...j->...ij', A, v)
return (phi0, phi1, phi2)
[docs] def compute_cgf_from_parents(self, u_mu_Lambda, u_A_nu, *u_inputs):
"""
Compute CGF using the moments of the parents.
"""
g = _compute_cgf_for_gaussian_markov_chain(u_mu_Lambda[1],
u_mu_Lambda[3],
u_A_nu[3],
self.N)
if len(u_inputs):
D = np.shape(u_mu_Lambda[0])[-1]
uu = u_inputs[0][1]
nu_BB = u_A_nu[1][...,D:,D:]
nu = u_A_nu[2]
#BB_v = np.einsum('...d,...dij->...ij', v, BB)
g_inputs = -0.5 * np.einsum(
'...ij,...ij->...',
uu,
np.sum(nu_BB, axis=-3)
#BB_v
)
# Sum over time axis
if np.ndim(g_inputs) == 0 or np.shape(g_inputs)[-1] == 1:
g_inputs *= self.N - 1
if np.ndim(g_inputs) > 0:
g_inputs = np.sum(g_inputs, axis=-1)
g = g + g_inputs
return g
[docs] def plates_to_parent(self, index, plates):
"""
Computes the plates of this node with respect to a parent.
If this node has plates (...), the latent dimensionality is D
and the number of time instances is N, the plates with respect
to the parents are:
(mu, Lambda): (...)
(A, nu): (...,N-1,D)
Parameters
----------
index : int
The index of the parent node to use.
"""
if index == 0: # (mu, Lambda)
return plates
elif index == 1: # (A, nu)
return plates + (self.N-1, self.D)
elif index == 2: # input signals
return plates + (self.N-1,)
else:
raise ValueError("Invalid parent index.")
[docs] def plates_from_parent(self, index, plates):
"""
Compute the plates using information of a parent node.
If the plates of the parents are:
(mu, Lambda): (...)
(A, nu): (...,N-1,D)
the resulting plates of this node are (...)
Parameters
----------
index : int
Index of the parent to use.
"""
if index == 0: # (mu, Lambda)
return plates
elif index == 1: # (A, nu)
return plates[:-2]
elif index == 2: # input signals
return plates[:-1]
else:
raise ValueError("Invalid parent index.")
[docs]class GaussianMarkovChain(_TemplateGaussianMarkovChain):
r"""
Node for Gaussian Markov chain random variables.
In a simple case, the graphical model can be presented as:
.. bayesnet::
\tikzstyle{latent} += [minimum size=30pt];
\node[latent] (x0) {$\mathbf{x}_0$};
\node[latent, right=of x0] (x1) {$\mathbf{x}_1$};
\node[right=of x1] (dots) {$\cdots$};
\node[latent, right=of dots] (xn) {$\mathbf{x}_{N-1}$};
\edge {x0}{x1};
\edge {x1}{dots};
\edge {dots}{xn};
\node[latent, above left=1 and 0.1 of x0] (mu) {$\boldsymbol{\mu}$};
\node[latent, above right=1 and 0.1 of x0] (Lambda) {$\mathbf{\Lambda}$};
\node[latent, above left=1 and 0.1 of dots] (A) {$\mathbf{A}$};
\node[latent, above right=1 and 0.1 of dots] (nu) {$\boldsymbol{\nu}$};
\edge {mu,Lambda} {x0};
\edge {A,nu} {x1,dots,xn};
where :math:`\boldsymbol{\mu}` and :math:`\mathbf{\Lambda}` are the mean and
the precision matrix of the initial state, :math:`\mathbf{A}` is the state
dynamics matrix and :math:`\boldsymbol{\nu}` is the precision of the
innovation noise. It is possible that :math:`\mathbf{A}` and/or
:math:`\boldsymbol{\nu}` are different for each transition instead of being
constant.
The probability distribution is
.. math::
p(\mathbf{x}_0, \ldots, \mathbf{x}_{N-1}) = p(\mathbf{x}_0)
\prod^{N-1}_{n=1} p(\mathbf{x}_n | \mathbf{x}_{n-1})
where
.. math::
p(\mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_0 | \boldsymbol{\mu}, \mathbf{\Lambda})
\\
p(\mathbf{x}_n|\mathbf{x}_{n-1}) &= \mathcal{N}(\mathbf{x}_n |
\mathbf{A}_{n-1}\mathbf{x}_{n-1}, \mathrm{diag}(\boldsymbol{\nu}_{n-1})).
Parameters
----------
mu : Gaussian-like node or (...,D)-array
:math:`\boldsymbol{\mu}`, mean of :math:`x_0`, :math:`D`-dimensional
with plates (...)
Lambda : Wishart-like node or (...,D,D)-array
:math:`\mathbf{\Lambda}`, precision matrix of :math:`x_0`,
:math:`D\times D` -dimensional with plates (...)
A : Gaussian-like node or (D,D)-array or (...,1,D,D)-array or (...,N-1,D,D)-array
:math:`\mathbf{A}`, state dynamics matrix, :math:`D`-dimensional with
plates (D,) or (...,1,D) or (...,N-1,D)
nu : gamma-like node or (D,)-array or (...,1,D)-array or (...,N-1,D)-array
:math:`\boldsymbol{\nu}`, diagonal elements of the precision of the
innovation process, plates (D,) or (...,1,D) or (...,N-1,D)
n : int, optional
:math:`N`, the length of the chain. Must be given if :math:`\mathbf{A}`
and :math:`\boldsymbol{\nu}` are constant over time.
See also
--------
Gaussian, GaussianARD, Wishart, Gamma, SwitchingGaussianMarkovChain,
VaryingGaussianMarkovChain, CategoricalMarkovChain
"""
[docs] def __init__(self, mu, Lambda, A, nu, n=None, inputs=None, **kwargs):
"""
Create GaussianMarkovChain node.
"""
super().__init__(mu, Lambda, A, nu, n=n, inputs=inputs, **kwargs)
@classmethod
def _constructor(cls, mu, Lambda, A, nu, n=None, inputs=None, **kwargs):
"""
Constructs distribution and moments objects.
Compute the dimensions of phi and u.
The plates and dimensions of the parents should be:
mu: (...) and D-dimensional
Lambda: (...) and D-dimensional
A: (...,1,D) or (...,N-1,D) and D-dimensional
v: (...,1,D) or (...,N-1,D) and 0-dimensional
N: () and 0-dimensional (dummy parent)
Check that the dimensionalities of the parents are proper.
For instance, A should be a collection of DxD matrices, thus
the dimensionality and the last plate should both equal D.
Similarly, `v` should be a collection of diagonal innovation
matrix elements, thus the last plate should equal D.
"""
mu_Lambda = WrapToGaussianWishart(mu, Lambda)
A_nu = WrapToGaussianGamma(A, nu, ndim=1)
D = mu_Lambda.dims[0][0]
if inputs is not None:
inputs = cls._ensure_moments(inputs, GaussianMoments, ndim=1)
# Check whether to use input signals or not
if inputs is None:
_parent_moments = (GaussianWishartMoments((D,)),
GaussianGammaMoments((D,)))
else:
K = inputs.dims[0][0]
_parent_moments = (GaussianWishartMoments((D,)),
GaussianGammaMoments((D,)),
GaussianMoments((K,)))
# Time instances from input signals
if inputs is not None and len(inputs.plates) >= 1:
n_inputs = inputs.plates[-1]
else:
n_inputs = 1
# Time instances from state dynamics matrix
if len(A_nu.plates) >= 2:
n_A_nu = A_nu.plates[-2]
else:
n_A_nu = 1
# Check consistency of the number of time instances
if n_inputs != n_A_nu and n_inputs != 1 and n_A_nu != 1:
raise Exception("Plates of parents are giving different number of time instances")
n_parents = max(n_A_nu, n_inputs)
if n is None:
if n_parents == 1:
raise Exception("The number of time instances could not be "
"determined automatically. Give the number of "
"time instances.")
n = n_parents + 1
elif n_parents != 1 and n_parents+1 != n:
raise Exception("The number of time instances must match "
"the number of last plates of parents: "
"%d != %d+1" % (n, n_parents))
# Dimensionality of the states
D = mu_Lambda.dims[0][0]
# Number of states
M = n
# Dimensionality of the inputs
if inputs is None:
D_inputs = 0
else:
D_inputs = inputs.dims[0][0]
# Check (mu, Lambda)
if mu_Lambda.dims != ( (D,), (), (D, D), () ):
raise Exception("Initial state parameters have wrong dimensionality")
# Check (A, nu)
if A_nu.dims != ( (D+D_inputs,), (D+D_inputs,D+D_inputs), (), () ):
raise Exception("Dynamics matrix has wrong dimensionality")
if len(A_nu.plates) == 0 or A_nu.plates[-1] != D:
raise Exception("Dynamics matrix should have a last plate "
"equal to the dimensionality of the "
"system.")
if (len(A_nu.plates) >= 2
and A_nu.plates[-2] != 1
and A_nu.plates[-2] != M-1):
raise ValueError("The second last plate of the dynamics matrix "
"should have length equal to one or "
"N-1, where N is the number of time "
"instances.")
# Check input signals
if inputs is not None:
if inputs.dims != ( (D_inputs,), (D_inputs, D_inputs) ):
raise ValueError("Input signals have wrong dimensionality")
moments = GaussianMarkovChainMoments(M, D)
dims = ( (M,D), (M,D,D), (M-1,D,D) )
distribution = GaussianMarkovChainDistribution(M, D)
if inputs is None:
parents = [mu_Lambda, A_nu]
else:
parents = [mu_Lambda, A_nu, inputs]
return ( parents,
kwargs,
dims,
cls._total_plates(kwargs.get('plates'),
distribution.plates_from_parent(0, mu_Lambda.plates),
distribution.plates_from_parent(1, A_nu.plates)),
distribution,
moments,
_parent_moments)
[docs] def rotate(self, R, inv=None, logdet=None):
# It would be more efficient and simpler, if you just rotated the
# moments and didn't touch phi. However, then you would need to call
# update() before lower_bound_contribution. This is more error-safe.
(u, phi, dg) = self._distribution.rotate(
self.u,
self.phi,
R,
inv=inv,
logdet=logdet
)
self.u = u
self.phi = phi
self.g = self.g + dg
return
[docs]class VaryingGaussianMarkovChainDistribution(TemplateGaussianMarkovChainDistribution):
"""
Sub-classes implement distribution specific computations.
"""
[docs] def compute_message_to_parent(self, parent, index, u, u_mu, u_Lambda, u_B,
u_S, u_v):
"""
Compute a message to a parent.
Parameters
-----------
index : int
Index of the parent requesting the message.
u : list of ndarrays
Moments of this node.
u_mu : list of ndarrays
Moments of parent `mu`.
u_Lambda : list of ndarrays
Moments of parent `Lambda`.
u_B : list of ndarrays
Moments of parent `B`.
u_S : list of ndarrays
Moments of parent `S`.
u_v : list of ndarrays
Moments of parent `v`.
"""
if index == 0: # mu
raise NotImplementedError()
elif index == 1: # Lambda
raise NotImplementedError()
elif index == 2: # B, (...,D)x(D,K)
XnXn = u[1] # (...,N,D,D)
XpXn = u[2] # (...,N,D,D)
S = misc.atleast_nd(u_S[0], 2) # (...,N,K)
SS = misc.atleast_nd(u_S[1], 3) # (...,N,K,K)
v = misc.atleast_nd(u_v[0], 2) # (...,N,D)
# m0: (...,D,D,K)
m0 = np.einsum('...nji,...nk,...ni->...ijk',
XpXn,
S,
v)
# m1: (...,D,D,K,D,K)
if np.ndim(v) >= 2 and np.shape(v)[-2] > 1:
raise ValueError("Innovation noise is time dependent")
m1 = np.einsum('...nij,...nkl->...ikjl',
XnXn[...,:-1,:,:],
SS)
m1 = -0.5 * np.einsum('...ikjl,...d->...dikjl',
m1,
v[...,0,:])
elif index == 3: # S, (...,N-1)x(K)
XnXn = u[1] # (...,N,D,D)
XpXn = u[2] # (...,N,D,D)
B = u_B[0] # (...,D,D,K)
BB = u_B[1] # (...,D,D,K,D,K)
v = u_v[0] # (...,N,D)
# m0: (...,N,K)
m0 = np.einsum('...nji,...ijk,...ni->...nk',
XpXn,
B,
np.atleast_2d(v))
# m1: (...,N,K,K)
if np.ndim(v) >= 2 and np.shape(v)[-2] > 1:
raise ValueError("Innovation noise is time dependent")
m1 = np.einsum('...dikjl,...d->...ikjl',
BB,
np.atleast_2d(v)[...,0,:])
m1 = -0.5 * np.einsum('...nij,...ikjl->...nkl',
XnXn[...,:-1,:,:],
m1)
elif index == 4: # v
raise NotImplementedError()
elif index == 5: # N
raise NotImplementedError()
return [m0, m1]
[docs] def compute_weights_to_parent(self, index, weights):
if index == 0: # mu
return weights
elif index == 1: # Lambda
return weights
elif index == 2: # B
return weights[...,np.newaxis] # new plate axis for D
elif index == 3: # S
return weights[...,np.newaxis] # new plate axis for N
elif index == 4: # v
return weights[...,np.newaxis,np.newaxis] # new plate axis for N and D
elif index == 5: # N
return weights
else:
raise ValueError("Invalid index")
[docs] def compute_phi_from_parents(self, u_mu, u_Lambda, u_B, u_S, u_v,
mask=True):
"""
Compute the natural parameters using parents' moments.
Parameters
----------
u_parents : list of list of arrays
List of parents' lists of moments.
Returns
-------
phi : list of arrays
Natural parameters.
dims : tuple
Shape of the variable part of phi.
"""
# Dimensionality of the Gaussian states
D = np.shape(u_mu[0])[-1]
# Number of time instances in the process
N = self.N
# Helpful variables (show shapes in comments)
mu = u_mu[0] # (..., D)
Lambda = u_Lambda[0] # (..., D, D)
B = u_B[0] # (..., D, D, K)
BB = u_B[1] # (..., D, D, K, D, K)
S = u_S[0] # (..., N-1, K) or (..., 1, K)
SS = u_S[1] # (..., N-1, K, K)
v = u_v[0] # (..., N-1, D) or (..., 1, D)
# TODO/FIXME: Take into account plates!
plates_phi0 = misc.broadcasted_shape(np.shape(mu)[:-1],
np.shape(Lambda)[:-2])
plates_phi1 = misc.broadcasted_shape(np.shape(Lambda)[:-2],
np.shape(v)[:-2],
np.shape(BB)[:-5],
np.shape(SS)[:-3])
plates_phi2 = misc.broadcasted_shape(np.shape(B)[:-3],
np.shape(S)[:-2],
np.shape(v)[:-2])
phi0 = np.zeros(plates_phi0 + (N,D))
phi1 = np.zeros(plates_phi1 + (N,D,D))
phi2 = np.zeros(plates_phi2 + (N-1,D,D))
# Parameters for x0
phi0[...,0,:] = np.einsum('...ik,...k->...i', Lambda, mu)
phi1[...,0,:,:] = Lambda
# Diagonal blocks: -0.5 * (V_i + A_{i+1}' * V_{i+1} * A_{i+1})
phi1[..., 1:, :, :] = v[...,np.newaxis]*np.identity(D)
if np.ndim(v) >= 2 and np.shape(v)[-2] > 1:
raise Exception("This implementation is not efficient if "
"innovation noise is time-dependent.")
phi1[..., :-1, :, :] += np.einsum('...dikjl,...kl,...d->...ij',
BB[...,None,:,:,:,:,:],
SS,
v)
else:
# We know that S does not have the D plate so we can sum that plate
# axis out
v_BB = np.einsum('...dikjl,...d->...ikjl',
BB[...,None,:,:,:,:,:],
v)
phi1[..., :-1, :, :] += np.einsum('...ikjl,...kl->...ij',
v_BB,
SS)
#phi1[..., :-1, :, :] += np.einsum('...kij,...k->...ij', AA, v)
phi1 *= -0.5
# Super-diagonal blocks: 0.5 * A.T * V
# However, don't multiply by 0.5 because there are both super- and
# sub-diagonal blocks (sum them together)
phi2[..., :, :, :] = np.einsum('...jik,...k,...j->...ij',
B[...,None,:,:,:],
S,
v)
#phi2[..., :, :, :] = np.einsum('...ji,...j->...ij', A, v)
return (phi0, phi1, phi2)
[docs] def compute_cgf_from_parents(self, u_mu, u_Lambda, u_B, u_S, u_v):
"""
Compute CGF using the moments of the parents.
"""
u_mumu_Lambda = linalg.inner(u_Lambda[0], u_mu[1], ndim=2)
return _compute_cgf_for_gaussian_markov_chain(u_mumu_Lambda,
u_Lambda[1],
u_v[1],
self.N)
[docs] def plates_to_parent(self, index, plates):
"""
Computes the plates of this node with respect to a parent.
If this node has plates (...), the latent dimensionality is D
and the number of time instances is N, the plates with respect
to the parents are:
mu: (...)
Lambda: (...)
A: (...,N-1,D)
v: (...,N-1,D)
Parameters
-----------
index : int
The index of the parent node to use.
"""
if index == 0: # mu
return plates
elif index == 1: # Lambda
return plates
elif index == 2: # B
return plates + (self.D,)
elif index == 3: # S
return plates + (self.N-1,)
elif index == 4: # v
return plates + (self.N-1,self.D)
else:
raise ValueError("Invalid parent index.")
[docs] def plates_from_parent(self, index, plates):
"""
Compute the plates using information of a parent node.
If the plates of the parents are:
mu: (...)
Lambda: (...)
B: (...,D)
S: (...,N-1)
v: (...,N-1,D)
N: ()
the resulting plates of this node are (...)
Parameters
----------
index : int
Index of the parent to use.
"""
if index == 0: # mu
return plates
elif index == 1: # Lambda
return plates
elif index == 2: # B, remove last plate D
return plates[:-1]
elif index == 3: # S, remove last plate N-1
return plates[:-1]
elif index == 4: # v, remove last plates N-1,D
return plates[:-2]
else:
raise ValueError("Invalid parent index.")
[docs]class VaryingGaussianMarkovChain(_TemplateGaussianMarkovChain):
r"""
Node for Gaussian Markov chain random variables with time-varying dynamics.
The node models a sequence of Gaussian variables
:math:`\mathbf{x}_0,\ldots,\mathbf{x}_{N-1}` with linear Markovian dynamics.
The time variability of the dynamics is obtained by modelling the state
dynamics matrix as a linear combination of a set of matrices with
time-varying linear combination weights. The
graphical model can be presented as:
.. bayesnet::
\tikzstyle{latent} += [minimum size=40pt];
\node[latent] (x0) {$\mathbf{x}_0$};
\node[latent, right=of x0] (x1) {$\mathbf{x}_1$};
\node[right=of x1] (dots) {$\cdots$};
\node[latent, right=of dots] (xn) {$\mathbf{x}_{N-1}$};
\edge {x0}{x1};
\edge {x1}{dots};
\edge {dots}{xn};
\node[latent, above left=1 and 0.1 of x0] (mu) {$\boldsymbol{\mu}$};
\node[latent, above right=1 and 0.1 of x0] (Lambda) {$\mathbf{\Lambda}$};
\node[det, below=of x1] (A0) {$\mathbf{A}_0$};
\node[right=of A0] (Adots) {$\cdots$};
\node[det, right=of Adots] (An) {$\mathbf{A}_{N-2}$};
\node[latent, above=of dots] (nu) {$\boldsymbol{\nu}$};
\edge {mu,Lambda} {x0};
\edge {nu} {x1,dots,xn};
\edge {A0} {x1};
\edge {Adots} {dots};
\edge {An} {xn};
\node[latent, below=of A0] (s0) {$s_{0,k}$};
\node[right=of s0] (sdots) {$\cdots$};
\node[latent, right=of sdots] (sn) {$\mathbf{s}_{N-2,k}$};
\node[latent, left=of s0] (B) {$\mathbf{B}_k$};
\edge {B} {A0, Adots, An};
\edge {s0} {A0};
\edge {sdots} {Adots};
\edge {sn} {An};
\plate {K} {(B)(s0)(sdots)(sn)} {$k=0,\ldots,K-1$};
where :math:`\boldsymbol{\mu}` and :math:`\mathbf{\Lambda}` are the mean and
the precision matrix of the initial state, :math:`\boldsymbol{\nu}` is the
precision of the innovation noise, and :math:`\mathbf{A}_n` are the state
dynamics matrix obtained by mixing matrices :math:`\mathbf{B}_k` with
weights :math:`s_{n,k}`.
The probability distribution is
.. math::
p(\mathbf{x}_0, \ldots, \mathbf{x}_{N-1}) = p(\mathbf{x}_0)
\prod^{N-1}_{n=1} p(\mathbf{x}_n | \mathbf{x}_{n-1})
where
.. math::
p(\mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_0 | \boldsymbol{\mu}, \mathbf{\Lambda})
\\
p(\mathbf{x}_n|\mathbf{x}_{n-1}) &= \mathcal{N}(\mathbf{x}_n |
\mathbf{A}_{n-1}\mathbf{x}_{n-1}, \mathrm{diag}(\boldsymbol{\nu})),
\quad \text{for } n=1,\ldots,N-1,
\\
\mathbf{A}_n & = \sum^{K-1}_{k=0} s_{n,k} \mathbf{B}_k, \quad \text{for }
n=0,\ldots,N-2.
Parameters
----------
mu : Gaussian-like node or (...,D)-array
:math:`\boldsymbol{\mu}`, mean of :math:`x_0`, :math:`D`-dimensional
with plates (...)
Lambda : Wishart-like node or (...,D,D)-array
:math:`\mathbf{\Lambda}`, precision matrix of :math:`x_0`,
:math:`D\times D` -dimensional with plates (...)
B : Gaussian-like node or (...,D,D,K)-array
:math:`\{\mathbf{B}_k\}_{k=0}^{K-1}`, a set of state dynamics matrix,
:math:`D \times K`-dimensional with plates (...,D)
S : Gaussian-like node or (...,N-1,K)-array
:math:`\{\mathbf{s}_0,\ldots,\mathbf{s}_{N-2}\}`, time-varying weights
of the linear combination, :math:`K`-dimensional with plates (...,N-1)
nu : gamma-like node or (...,D)-array
:math:`\boldsymbol{\nu}`, diagonal elements of the precision of the
innovation process, plates (...,D)
n : int, optional
:math:`N`, the length of the chain. Must be given if :math:`\mathbf{S}`
does not have plates over the time domain (which would not make sense).
See also
--------
Gaussian, GaussianARD, Wishart, Gamma, GaussianMarkovChain,
SwitchingGaussianMarkovChain
Notes
-----
Equivalent model block can be constructed with :class:`GaussianMarkovChain`
by explicitly using :class:`SumMultiply` to compute the linear combination.
However, that approach is not very efficient for large datasets because it
does not utilize the structure of :math:`\mathbf{A}_n`, thus it explicitly
computes huge moment arrays.
References
----------
:cite:`Luttinen:2014`
"""
[docs] def __init__(self, mu, Lambda, B, S, nu, n=None, **kwargs):
"""
Create VaryingGaussianMarkovChain node.
"""
super().__init__(mu, Lambda, B, S, nu, n=n, **kwargs)
@classmethod
def _constructor(cls, mu, Lambda, B, S, v, n=None, **kwargs):
"""
Constructs distribution and moments objects.
Compute the dimensions of phi and u.
The plates and dimensions of the parents should be:
mu: (...) and D-dimensional
Lambda: (...) and D-dimensional
B: (...,D) and (D,K)-dimensional
S: (...,N-1) and K-dimensional
v: (...,1,D) or (...,N-1,D) and 0-dimensional
N: () and 0-dimensional (dummy parent)
Check that the dimensionalities of the parents are proper.
"""
mu = cls._ensure_moments(mu, GaussianMoments, ndim=1)
Lambda = cls._ensure_moments(Lambda, WishartMoments, ndim=1)
B = cls._ensure_moments(B, GaussianMoments, ndim=2)
S = cls._ensure_moments(S, GaussianMoments, ndim=1)
v = cls._ensure_moments(v, GammaMoments)
(D, K) = B.dims[0]
parent_moments = (
GaussianMoments((D,)),
WishartMoments((D,)),
GaussianMoments((D, K)),
GaussianMoments((K,)),
GammaMoments()
)
# A dummy wrapper for the number of time instances.
n_S = 1
if len(S.plates) >= 1:
n_S = S.plates[-1]
n_v = 1
if len(v.plates) >= 2:
n_v = v.plates[-2]
if n_v != n_S and n_v != 1 and n_S != 1:
raise Exception(
"Plates of A and v are giving different number of time "
"instances")
n_S = max(n_v, n_S)
if n is None:
if n_S == 1:
raise Exception(
"The number of time instances could not be determined "
"automatically. Give the number of time instances.")
n = n_S + 1
elif n_S != 1 and n_S+1 != n:
raise Exception(
"The number of time instances must match the number of last "
"plates of parents:" "%d != %d+1"
% (n, n_S))
D = mu.dims[0][0]
K = B.dims[0][-1]
M = n #N.get_moments()[0]
# Check mu
if mu.dims != ( (D,), (D,D) ):
raise ValueError("First parent has wrong dimensionality")
# Check Lambda
if Lambda.dims != ( (D,D), () ):
raise ValueError("Second parent has wrong dimensionality")
# Check B
if B.dims != ( (D,K), (D,K,D,K) ):
raise ValueError("Third parent has wrong dimensionality {0}. Should be {1}.".format(B.dims[0], (D,K)))
if len(B.plates) == 0 or B.plates[-1] != D:
raise ValueError("Third parent should have a last plate "
"equal to the dimensionality of the "
"system.")
if S.dims != ( (K,), (K,K) ):
raise ValueError("Fourth parent has wrong dimensionality %s, "
"should be %s"
% (S.dims, ( (K,), (K,K) )))
if (len(S.plates) >= 1
and S.plates[-1] != 1
and S.plates[-1] != M-1):
raise ValueError("The last plate of the fourth "
"parent should have length equal to one or "
"N-1, where N is the number of time "
"instances.")
# Check v
if v.dims != ( (), () ):
raise Exception("Fifth parent has wrong dimensionality")
if len(v.plates) == 0 or v.plates[-1] != D:
raise Exception("Fifth parent should have a last plate "
"equal to the dimensionality of the "
"system.")
if (len(v.plates) >= 2
and v.plates[-2] != 1
and v.plates[-2] != M-1):
raise ValueError("The second last plate of the fifth "
"parent should have length equal to one or "
"N-1 where N is the number of time "
"instances.")
distribution = VaryingGaussianMarkovChainDistribution(M, D)
moments = GaussianMarkovChainMoments(M, D)
parents = [mu, Lambda, B, S, v]
dims = ( (M,D), (M,D,D), (M-1,D,D) )
return (parents,
kwargs,
dims,
cls._total_plates(kwargs.get('plates'),
distribution.plates_from_parent(0, mu.plates),
distribution.plates_from_parent(1, Lambda.plates),
distribution.plates_from_parent(2, B.plates),
distribution.plates_from_parent(3, S.plates),
distribution.plates_from_parent(4, v.plates)),
distribution,
moments,
parent_moments)
[docs]class SwitchingGaussianMarkovChainDistribution(TemplateGaussianMarkovChainDistribution):
"""
Sub-classes implement distribution specific computations.
"""
[docs] def __init__(self, N, D, K):
self.K = K
super().__init__(N, D)
[docs] def compute_message_to_parent(self, parent, index, u, u_mu, u_Lambda, u_B,
u_Z, u_v):
"""
Compute a message to a parent.
Parameters
----------
index : int
Index of the parent requesting the message.
u : list of ndarrays
Moments of this node.
u_mu : list of ndarrays
Moments of parent `mu`.
u_Lambda : list of ndarrays
Moments of parent `Lambda`.
u_B : list of ndarrays
Moments of parent `B`.
u_Z : list of ndarrays
Moments of parent `Z`.
u_v : list of ndarrays
Moments of parent `v`.
"""
if index == 0: # mu
raise NotImplementedError()
elif index == 1: # Lambda
raise NotImplementedError()
elif index == 2: # B, (...,K,D)x(D)
XnXn = u[1] # (...,N,D,D)
XpXn = u[2] # (...,N-1,D,D)
Z = u_Z[0] # (...,N-1,K)
v = misc.atleast_nd(u_v[0], 2) # (...,N-1,D)
# Check that there is no time-dependency in v and remove the axis
if np.ndim(v) >= 2 and np.shape(v)[-2] > 1:
raise ValueError("Innovation noise is time dependent")
v = np.squeeze(v, axis=-2)
# m0: (...,K,D,D)
m0 = np.einsum('...nji,...nk,...i->...kij',
XpXn,
Z,
v)
# m1: (...,K,D,D,D)
m1 = np.einsum('...nij,...nk->...kij',
XnXn[...,:-1,:,:],
Z)
m1 = -0.5 * np.einsum('...kij,...d->...kdij',
m1,
v)
return [m0, m1]
elif index == 3: # Z, (...,N-1)x(K)
XnXn = u[1] # (...,N,D,D)
XpXn = u[2] # (...,N-1,D,D)
B = u_B[0] # (...,K,D,D)
BB = u_B[1] # (...,K,D,D,D)
v = misc.atleast_nd(u_v[0], 2) # (...,N-1,D)
logv = misc.atleast_nd(u_v[1], 2) # (...,N-1,D)
# Check that there is no time-dependency in v and remove the axis
if np.ndim(v) >= 2 and np.shape(v)[-2] > 1:
raise ValueError("Innovation noise is time dependent")
v = np.squeeze(v, axis=-2)
if np.ndim(logv) >= 2 and np.shape(logv)[-2] > 1:
raise ValueError("Innovation noise is time dependent")
logv = np.squeeze(logv, axis=-2)
XnXn_v = np.einsum('...nii,...i->...n',
XnXn[...,1:,:,:],
v)
XpXn_v_B = np.einsum('...nil,...l,...kli->...nk',
XpXn,
v,
B)
BvB = np.einsum('...kdij,...d->...kij',
BB,
v)
XpXp_BvB = np.einsum('...nij,...kij->...nk',
XnXn[...,:-1,:,:],
BvB)
m0 = ( -0.5 * XnXn_v[...,None]
+ XpXn_v_B
-0.5 * XpXp_BvB
+0.5 * np.sum(logv, axis=-1)[...,None,None]
-0.5 * self.D * np.log(2*np.pi) )
return [m0]
elif index == 4: # v
raise NotImplementedError()
elif index == 5: # N
raise NotImplementedError()
[docs] def compute_weights_to_parent(self, index, weights):
if index == 0: # mu: (...)x(N,D) -> (...)x(D)
return weights
elif index == 1: # Lambda: (...)x(N,D) -> (...)x(D,D)
return weights
elif index == 2: # B: (...)x(N,D) -> (...,K,D)x(D)
return weights[...,None,None]
elif index == 3: # Z: (...)x(N,D) -> (...,N-1)x(K)
return weights[...,None]
elif index == 4: # v: (...)x(N,D) -> (...,N-1,D)x()
return weights[...,None,None]
else:
raise ValueError("Invalid index")
[docs] def compute_phi_from_parents(self, u_mu, u_Lambda, u_B, u_Z, u_v,
mask=True):
"""
Compute the natural parameters using parents' moments.
Parameters
----------
u_parents : list of list of arrays
List of parents' lists of moments.
Returns
-------
phi : list of arrays
Natural parameters.
dims : tuple
Shape of the variable part of phi.
"""
# Dimensionality of the Gaussian states
D = np.shape(u_mu[0])[-1]
# Number of time instances in the process
N = self.N
# Helpful variables (show shapes in comments)
mu = u_mu[0] # (..., D)
Lambda = u_Lambda[0] # (..., D, D)
B = u_B[0] # (..., K, D, D)
BB = u_B[1] # (..., K, D, D, D)
Z = u_Z[0] # (..., N-1, K)
v = misc.atleast_nd(u_v[0], 2) # (..., N-1, D) or (..., 1, D)
# TODO/FIXME: Take into account plates!
plates_phi0 = misc.broadcasted_shape(np.shape(mu)[:-1],
np.shape(Lambda)[:-2])
plates_phi1 = misc.broadcasted_shape(np.shape(Lambda)[:-2],
np.shape(v)[:-2],
np.shape(BB)[:-4],
np.shape(Z)[:-2])
plates_phi2 = misc.broadcasted_shape(np.shape(B)[:-3],
np.shape(Z)[:-2],
np.shape(v)[:-2])
phi0 = np.zeros(plates_phi0 + (N,D))
phi1 = np.zeros(plates_phi1 + (N,D,D))
phi2 = np.zeros(plates_phi2 + (N-1,D,D))
# Parameters for x0
phi0[...,0,:] = np.einsum('...ik,...k->...i', Lambda, mu)
phi1[...,0,:,:] = Lambda
# Diagonal blocks: -0.5 * (V_i + A_{i+1}' * V_{i+1} * A_{i+1})
phi1[..., 1:, :, :] = v[...,None]*np.identity(D)
if np.shape(v)[-2] > 1:
raise Exception("This implementation is not efficient if "
"innovation noise is time-dependent.")
phi1[..., :-1, :, :] += np.einsum('...kdij,...nk,...nd->...nij',
BB[...,:,:,:,:],
Z,
v)
else:
# We know that S does not have the D plate so we can sum that plate
# axis out
v_BB = np.einsum('...kdij,...nd->...nkij',
BB[...,:,:,:,:],
v)
phi1[..., :-1, :, :] += np.einsum('...nkij,...nk->...nij',
v_BB,
Z)
phi1 *= -0.5
# Super-diagonal blocks: 0.5 * A.T * V
# However, don't multiply by 0.5 because there are both super- and
# sub-diagonal blocks (sum them together)
phi2[..., :, :, :] = np.einsum('...kji,...nk,...nj->...nij',
B[...,:,:,:],
Z,
v)
return (phi0, phi1, phi2)
[docs] def compute_cgf_from_parents(self, u_mu, u_Lambda, u_B, u_Z, u_v):
"""
Compute CGF using the moments of the parents.
"""
u_mumu_Lambda = linalg.inner(u_Lambda[0], u_mu[1], ndim=2)
return _compute_cgf_for_gaussian_markov_chain(u_mumu_Lambda,
u_Lambda[1],
u_v[1],
self.N)
[docs] def plates_to_parent(self, index, plates):
"""
Computes the plates of this node with respect to a parent.
If this node has plates (...), the latent dimensionality is D
and the number of time instances is N, the plates with respect
to the parents are:
mu: (...)
Lambda: (...)
A: (...,N-1,D)
v: (...,N-1,D)
Parameters
----------
index : int
The index of the parent node to use.
"""
if index == 0: # mu: (...)x(N,D) -> (...)x(D)
return plates
elif index == 1: # Lambda: (...)x(N,D) -> (...)x(D,D)
return plates
elif index == 2: # B: (...)x(N,D) -> (...,K,D)x(D)
return plates + (self.K,self.D)
elif index == 3: # Z: (...)x(N,D) -> (...,N-1)x(K)
return plates + (self.N-1,)
elif index == 4: # v: (...)x(N,D) -> (...,N-1,D)x()
return plates + (self.N-1,self.D)
else:
raise ValueError("Invalid parent index.")
[docs] def plates_from_parent(self, index, plates):
"""
Compute the plates using information of a parent node.
If the plates of the parents are:
mu: (...)
Lambda: (...)
B: (...,D)
S: (...,N-1)
v: (...,N-1,D)
N: ()
the resulting plates of this node are (...)
Parameters
----------
index : int
Index of the parent to use.
"""
if index == 0: # mu: (...)x(D) -> (...)x(N,D)
return plates
elif index == 1: # Lambda: (...)x(D,D) -> (...)x(N,D)
return plates
elif index == 2: # B: (...,K,D)x(D) -> (...)x(N,D)
return plates[:-2]
elif index == 3: # Z: (...,N-1)x(K) -> (...)x(N,D)
return plates[:-1]
elif index == 4: # v: (...,N-1,D)x() -> (...)x(N,D)
return plates[:-2]
else:
raise ValueError("Invalid parent index.")
[docs]class SwitchingGaussianMarkovChain(_TemplateGaussianMarkovChain):
r"""
Node for Gaussian Markov chain random variables with switching dynamics.
The node models a sequence of Gaussian variables
:math:`\mathbf{x}_0,\ldots,\mathbf{x}_{N-1}$ with linear Markovian dynamics.
The dynamics may change in time, which is obtained by having a set of
matrices and at each time selecting one of them as the state dynamics
matrix. The graphical model can be presented as:
.. bayesnet::
\tikzstyle{latent} += [minimum size=40pt];
\node[latent] (x0) {$\mathbf{x}_0$};
\node[latent, right=of x0] (x1) {$\mathbf{x}_1$};
\node[right=of x1] (dots) {$\cdots$};
\node[latent, right=of dots] (xn) {$\mathbf{x}_{N-1}$};
\edge {x0}{x1};
\edge {x1}{dots};
\edge {dots}{xn};
\node[latent, above left=1 and 0.1 of x0] (mu) {$\boldsymbol{\mu}$};
\node[latent, above right=1 and 0.1 of x0] (Lambda) {$\mathbf{\Lambda}$};
\node[det, below=of x1] (A0) {$\mathbf{A}_0$};
\node[right=of A0] (Adots) {$\cdots$};
\node[det, right=of Adots] (An) {$\mathbf{A}_{N-2}$};
\node[latent, above=of dots] (nu) {$\boldsymbol{\nu}$};
\edge {mu,Lambda} {x0};
\edge {nu} {x1,dots,xn};
\edge {A0} {x1};
\edge {Adots} {dots};
\edge {An} {xn};
\node[latent, below=of A0] (z0) {$z_0$};
\node[right=of z0] (zdots) {$\cdots$};
\node[latent, right=of zdots] (zn) {$z_{N-2}$};
\node[latent, left=of z0] (B) {$\mathbf{B}_k$};
\edge {B} {A0, Adots, An};
\edge {z0} {A0};
\edge {zdots} {Adots};
\edge {zn} {An};
\plate {K} {(B)} {$k=0,\ldots,K-1$};
where :math:`\boldsymbol{\mu}` and :math:`\mathbf{\Lambda}` are the mean and
the precision matrix of the initial state, :math:`\boldsymbol{\nu}` is the
precision of the innovation noise, and :math:`\mathbf{A}_n` are the state
dynamics matrix obtained by selecting one of the matrices
:math:`\{\mathbf{B}_k\}^{K-1}_{k=0}` at each time. The selections are
provided by :math:`z_n\in\{0,\ldots,K-1\}`. The probability distribution is
.. math::
p(\mathbf{x}_0, \ldots, \mathbf{x}_{N-1}) = p(\mathbf{x}_0)
\prod^{N-1}_{n=1} p(\mathbf{x}_n | \mathbf{x}_{n-1})
where
.. math::
p(\mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_0 | \boldsymbol{\mu}, \mathbf{\Lambda})
\\
p(\mathbf{x}_n|\mathbf{x}_{n-1}) &= \mathcal{N}(\mathbf{x}_n |
\mathbf{A}_{n-1}\mathbf{x}_{n-1}, \mathrm{diag}(\boldsymbol{\nu})),
\quad \text{for } n=1,\ldots,N-1,
\\
\mathbf{A}_n &= \mathbf{B}_{z_n}, \quad \text{for }
n=0,\ldots,N-2.
Parameters
----------
mu : Gaussian-like node or (...,D)-array
:math:`\boldsymbol{\mu}`, mean of :math:`x_0`, :math:`D`-dimensional
with plates (...)
Lambda : Wishart-like node or (...,D,D)-array
:math:`\mathbf{\Lambda}`, precision matrix of :math:`x_0`,
:math:`D\times D` -dimensional with plates (...)
B : Gaussian-like node or (...,D,D,K)-array
:math:`\{\mathbf{B}_k\}_{k=0}^{K-1}`, a set of state dynamics matrix,
:math:`D \times K`-dimensional with plates (...,D)
Z : categorical-like node or (...,N-1)-array
:math:`\{z_0,\ldots,z_{N-2}\}`, time-dependent selection,
:math:`K`-categorical with plates (...,N-1)
nu : gamma-like node or (...,D)-array
:math:`\boldsymbol{\nu}`, diagonal elements of the precision of the
innovation process, plates (...,D)
n : int, optional
:math:`N`, the length of the chain. Must be given if :math:`\mathbf{Z}`
does not have plates over the time domain (which would not make sense).
See also
--------
Gaussian, GaussianARD, Wishart, Gamma, GaussianMarkovChain,
VaryingGaussianMarkovChain, Categorical, CategoricalMarkovChain
Notes
-----
Equivalent model block can be constructed with :class:`GaussianMarkovChain`
by explicitly using :class:`Gate` to select the state dynamics matrix.
However, that approach is not very efficient for large datasets because it
does not utilize the structure of :math:`\mathbf{A}_n`, thus it explicitly
computes huge moment arrays.
"""
[docs] def __init__(self, mu, Lambda, B, Z, nu, n=None, **kwargs):
"""
Create SwitchingGaussianMarkovChain node.
"""
super().__init__(mu, Lambda, B, Z, nu, n=n, **kwargs)
@classmethod
def _constructor(cls, mu, Lambda, B, Z, v, n=None, **kwargs):
"""
Constructs distribution and moments objects.
Compute the dimensions of phi and u.
The plates and dimensions of the parents should be:
mu: (...) and D-dimensional
Lambda: (...) and D-dimensional
B: (...,K,D) and D-dimensional
Z: (...,N-1) and K-dimensional
v: (...,1,D) or (...,N-1,D) and 0-dimensional
Check that the dimensionalities of the parents are proper.
"""
# Infer the number of dynamic matrices
B = cls._ensure_moments(B, GaussianMoments, ndim=1)
K = B.plates[-2]
mu = cls._ensure_moments(mu, GaussianMoments, ndim=1)
Lambda = cls._ensure_moments(Lambda, WishartMoments, ndim=1)
Z = cls._ensure_moments(Z, CategoricalMoments, categories=K)
v = cls._ensure_moments(v, GammaMoments)
parent_moments = (
mu._moments,
Lambda._moments,
B._moments,
Z._moments,
v._moments
)
# Infer the length of the chain
n_Z = 1
if len(Z.plates) == 0:
raise ValueError("Z must have temporal axis on plates")
n_Z = Z.plates[-1]
n_v = 1
if len(v.plates) >= 2:
n_v = v.plates[-2]
if n_v != n_Z and n_v != 1 and n_Z != 1:
raise Exception(
"Plates of Z and v are giving different number of time "
"instances")
n_Z = max(n_v, n_Z)
if n is None:
if n_Z == 1:
raise Exception(
"The number of time instances could not be determined "
"automatically. Give the number of time instances.")
n = n_Z + 1
elif n_Z != 1 and n_Z+1 != n:
raise Exception(
"The number of time instances must match the number of last "
"plates of parents:" "%d != %d+1"
% (n, n_Z))
D = mu.dims[0][0]
K = Z.dims[0][0]
M = n #N.get_moments()[0]
# Check mu
if mu.dims != ( (D,), (D,D) ):
raise ValueError("First parent has wrong dimensionality")
# Check Lambda
if Lambda.dims != ( (D,D), () ):
raise ValueError("Second parent has wrong dimensionality")
# Check B
if B.dims != ( (D,), (D,D) ):
raise ValueError("Third parent has wrong dimensionality")
if len(B.plates) < 2 or B.plates[-2:] != (K,D):
raise ValueError("Third parent should have a last plate "
"equal to the dimensionality of the "
"system.")
if Z.dims != ( (K,), ):
raise ValueError("Fourth parent has wrong dimensionality %s, "
"should be %s"
% (Z.dims, ( (K,), )))
if Z.plates[-1] != M-1:
raise ValueError("The last plate of the fourth "
"parent should have length equal to one or "
"N-1, where N is the number of time "
"instances.")
# Check v
if v.dims != ( (), () ):
raise Exception("Fifth parent has wrong dimensionality")
if len(v.plates) == 0 or v.plates[-1] != D:
raise Exception("Fifth parent should have a last plate "
"equal to the dimensionality of the "
"system.")
if (len(v.plates) >= 2
and v.plates[-2] != 1
and v.plates[-2] != M-1):
raise ValueError("The second last plate of the fifth "
"parent should have length equal to one or "
"N-1 where N is the number of time "
"instances.")
dims = ( (M,D), (M,D,D), (M-1,D,D) )
distribution = SwitchingGaussianMarkovChainDistribution(M, D, K)
moments = GaussianMarkovChainMoments(M, D)
parents = [mu, Lambda, B, Z, v]
return (parents,
kwargs,
dims,
cls._total_plates(kwargs.get('plates'),
distribution.plates_from_parent(0, mu.plates),
distribution.plates_from_parent(1, Lambda.plates),
distribution.plates_from_parent(2, B.plates),
distribution.plates_from_parent(3, Z.plates),
distribution.plates_from_parent(4, v.plates)),
distribution,
moments,
parent_moments)
class _MarkovChainToGaussian(Deterministic):
"""
Transform a Gaussian Markov chain node into a Gaussian node.
This node is deterministic.
"""
def __init__(self, X, **kwargs):
X = self._ensure_moments(X, GaussianMarkovChainMoments)
D = X.dims[0][-1]
self._moments = GaussianMoments((D,))
self._parent_moments = (X._moments,)
super().__init__(X, dims=self._moments.dims, **kwargs)
def _plates_to_parent(self, index):
"""
Return the number of plates to the parent node.
Normally, the parent sees the same number of plates as the
node itself. However, now that one of the variable dimensions
of the parents corresponds to a plate in this node, it is
necessary to fix it here: the last plate is ignored when
calculating plates with respect to the parent.
Parent:
Plates = (...)
Dims = (N, ...)
This node:
Plates = (..., N)
Dims = (...)
"""
return self.plates[:-1]
def _plates_from_parent(self, index):
# Sub-classes may want to overwrite this if they manipulate plates
if index != 0:
raise ValueError("Invalid parent index.")
parent = self.parents[0]
plates = parent.plates + (parent.dims[0][0],)
return plates
def _compute_moments(self, u):
"""
Transform the moments of a GMC to moments of a Gaussian.
There is no need to worry about the plates and variable
dimensions because the child node is free to interpret the
axes as it pleases. However, the Gaussian moments contain
only <X(n)> and <X(n)*X(n)> but not <X(n-1)X(n)>, thus the
last moment is discarded.
"""
# Get the moments from the parent Gaussian Markov Chain
#u = self.parents[0].get_moments() #message_to_child()
# Send only moments <X(n)> and <X(n)X(n)> but not <X(n-1)X(n)>
return u[:2]
def _compute_weights_to_parent(self, index, weights):
# Remove the last axis of the mask
if np.ndim(weights) >= 1:
weights = np.sum(weights, axis=-1)
return weights
@staticmethod
def _compute_message_to_parent(index, m_children, *u_parents):
"""
Transform a message to a Gaussian into a message to a GMC.
The messages to a Gaussian are almost correct, there are only
two minor things to be done:
1) The last plate is changed into a variable/time dimension.
Because a message mask is applied for plates only, the last
axis of the mask must be applied to the message because the
last plate is changed to a variable/time dimension.
2) Because the message does not contain <X(n-1)X(n)> part,
we'll put the last/third message to None meaning that it is
empty.
Parameters
----------
index : int
Index of the parent requesting the message.
u_parents : list of list of ndarrays
List of parents' moments.
Returns
-------
m : list of ndarrays
Message as a list of arrays.
mask : boolean ndarray
Mask telling which plates should be taken into account.
"""
# Add the third empty message
return [m_children[0], m_children[1], None]
# Make use of the converter
GaussianMarkovChainMoments.add_converter(GaussianMoments,
_MarkovChainToGaussian)