bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution¶
- class bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution(N, D)[source]¶
- Implementation of VMP formulas for Gaussian Markov chain - The log probability density function of the prior: - Todo - Fix inputs and their weight matrix in the equations. - For simplicity, - and - are assumed not to depend on - in the above equation, but this distribution class supports that dependency. One only needs to do the following replacements in the equations: - and - , where - . - The log probability denisty function of the posterior approximation: - __init__(N, D)¶
 - Methods - __init__(N, D)- compute_cgf_from_parents(u_mu_Lambda, ...)- Compute CGF using the moments of the parents. - compute_fixed_moments_and_f(x[, mask])- Compute u(x) and f(x) for given x. - compute_gradient(g, u, phi)- Compute the standard gradient with respect to the natural parameters. - compute_logpdf(u, phi, g, f, ndims)- Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. - compute_message_to_parent(parent, index, u, ...)- Compute a message to a parent. - compute_moments_and_cgf(phi[, mask])- Compute the moments and the cumulant-generating function. - compute_phi_from_parents(u_mu_Lambda, ...[, ...])- Compute the natural parameters using parents' moments. - compute_rotation_bound(u, u_mu_Lambda, u_A_V, R)- compute_weights_to_parent(index, weights)- Maps the mask to the plates of a parent. - plates_from_parent(index, plates)- Compute the plates using information of a parent node. - plates_to_parent(index, plates)- Computes the plates of this node with respect to a parent. - random(*params[, plates])- Draw a random sample from the distribution. - rotate(u, phi, R[, inv, logdet])- squeeze(axis)- Squeeze a plate axis from the distribution