bayespy.nodes.Beta¶
- class bayespy.nodes.Beta(alpha, **kwargs)[source]¶
- Node for beta random variables. - The node models a probability variable - as - where - and - are prior counts for success and failure, respectively. - Parameters:
- alpha ((...,2)-shaped array) – Two-element vector containing - and 
 - Examples - >>> import warnings >>> warnings.filterwarnings('ignore', category=RuntimeWarning) >>> from bayespy.nodes import Bernoulli, Beta >>> p = Beta([1e-3, 1e-3]) >>> z = Bernoulli(p, plates=(10,)) >>> z.observe([0, 1, 1, 1, 0, 1, 1, 1, 0, 1]) >>> p.update() >>> import bayespy.plot as bpplt >>> import numpy as np >>> bpplt.pdf(p, np.linspace(0, 1, num=100)) [<matplotlib.lines.Line2D object at 0x...>] - Methods - __init__(alpha, **kwargs)- Create beta node - add_plate_axis(to_plate)- broadcasting_multiplier(plates, *args)- delete()- Delete this node and the children - get_gradient(rg)- Computes gradient with respect to the natural parameters. - get_mask()- Return parameters of the VB distribution. - Computes the Riemannian/natural gradient. - get_shape(ind)- Return True if the node has a plotter - initialize_from_parameters(*args)- Set the variable to a random sample from the current distribution. - initialize_from_value(x, *args)- load(filename)- logpdf(X[, mask])- Compute the log probability density function Q(X) of this node. - lower_bound_contribution([gradient, ...])- Compute E[ log p(X|parents) - log q(X) ] - move_plates(from_plate, to_plate)- observe(x, *args[, mask])- Fix moments, compute f and propagate mask. - pdf(X[, mask])- Compute the probability density function of this node. - plot([fig])- Plot the node distribution using the plotter of the node - random()- Draw a random sample from the distribution. - save(filename)- Set the parameters of the VB distribution. - set_plotter(plotter)- show()- Print the distribution using standard parameterization. - update([annealing])- Attributes - Plate multiplier is applied to messages to parents